2 research outputs found

    Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process

    Get PDF
    Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model

    Design and Implementation of a Neuro-Fuzzy System for Longitudinal Control of Autonomous Vehicles

    No full text
    International audienceThe control of nonlinear systems has been putting especial attention in the use of Artificial Intelligent techniques, where fuzzy logic presents one of the best alternatives due to the exploit of human knowledge. However, several fuzzy logic real-world applications use manual tuning (human expertise) to adjust control systems. On the other hand, in the Intelligent Transport Systems (ITS) field, the longitudinal control (throttle and brake management) is an important topic because external perturbations can generate uncomfortable accelerations as well as unnecessary fuel consumption. In this work, we utilize a neuro-fuzzy system to use human driving knowledge to tune and adjust the input-output parameters of a fuzzy ifthen system. The neuro-fuzzy system considered in this work is ANFIS (Adaptive-Network-based Fuzzy Inference System). Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous manual tuned controller, mainly in comfort and efficient use of actuators
    corecore